Affiliation:
1. Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science & Technology, Liuzhou 545006, China
2. Foshan Taoyuan Advanced Manufacturing Research Institute, Foshan 528225, China
3. Guangdong Yueke New Material Technology Co., Ltd., Foshan 528225, China
Abstract
The Ni6035WC/WC-10Co-4Cr wear- and scour-resistant composite coating was fabricated using supersonic flame spraying technology. To further enhance the wear and scour resistance of the HVAF-sprayed Ni6035WC/WC-10Co-4Cr composite coatings, a post-treatment was conducted via vacuum remelting. This involved placing the coatings in a vacuum sintering process at 1120 °C for 10 min. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and hardness testing were employed to characterize the structure and morphology of the Ni6035WC/WC-10Co-4Cr coating, as well as to assess its wear and scour resistance. The results indicate that vacuum sintering significantly enhances the wear and scour resistance of the coating, while also improving its hardness, density, and bonding strength. The hardness of each coating after vacuum sintering, 1019 HV, 920 HV, and 897 HV, was improved by 6% compared to 966 HV, 906 HV, and 845 HV before sintering. The average wear rate of each coating after sintering was 13% lower than before vacuum sintering. Furthermore, the impact of varying WC-10Co-4Cr content on the coating’s properties was examined under identical test conditions. It was found that the optimal overall performance was achieved with a WC-10Co-4Cr content of 20%, resulting in an average wear rate that was 19% lower than that of other coatings.