Fluorine-Free Plasma Polymers to Obtain Water-Repellent Cotton Fabrics: How to Control Their Durability?

Author:

Jebali Syrine12ORCID,Carneiro de Oliveira Jamerson1,Airoudj Aissam1,Riahi Asma1,Fioux Philippe1,Morlet-Savary Fabrice1,Josien Ludovic1,Ferreira Isabelle2,Roucoules Vincent1,Bally-Le Gall Florence1ORCID

Affiliation:

1. Université de Haute-Alsace, Université de Strasbourg, CNRS, IS2M UMR 7361, 15 rue Jean Starcky, F-68100 Mulhouse, France

2. Institut Français du Textile et de l’Habillement (IFTH), 185 rue de l’Illberg, F-68200 Mulhouse, France

Abstract

The plasma polymerization of hexamethyldisiloxane (HMDSO) leads to the environmentally friendly fabrication of water-repellent coatings through a vapor-phase surface functionalization process using alternatives to the controversial perfluoroacrylate precursors. However, the durability of these coatings is their Achilles’ heel, which requires an in-depth study of the relationship between the structure and properties of these thin films in order to propose concrete solutions for the fabrication of fluorine-free water-repellent textiles. In this context, HMDSO plasma polymers have been deposited on cotton fabrics in an original reactor that allows easy tuning of temporal and spatial parameters of the glow discharge. The functionalized fabrics were characterized to gain insights into the chemical composition of the coatings, their morphology and, above all, their adhesion properties. Interestingly, the results after washing tests revealed a significant dependence of the durability of the superhydrophobic property on the elastic modulus of the deposited polymer. The formation of some radicals at the substrate–thin film interface in the early stages of deposition also correlates with some results. These relationships between the operating conditions of the plasma polymerization, the interfacial properties and the performances of the functionalized fabrics, but also the characterization methodology developed in this work, can undoubtedly serve the engineering of water-repellent fluorine-free coatings on fabrics with optimal durability.

Funder

Institut Carnot MICA

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3