Abstract
The aim of this paper is to present the current status on animal-origin hydroxyapatite (HA) coatings synthesized by Pulsed Laser Deposition (PLD) technique for medical implant applications. PLD as a thin film synthesis method, although limited in terms of surface covered area, still gathers interest among researchers due to its advantages such as stoichiometric transfer, thickness control, film adherence, and relatively simple experimental set-up. While animal-origin HA synthesized by bacteria or extracted from animal bones, eggshells, and clams was tested in the form of thin films or scaffolds as a bioactive agent before, the reported results on PLD coatings from HA materials extracted from natural sources were not gathered and compared until the present study. Since natural apatite contains trace elements and new functional groups, such as CO32− and HPO42− in its complex molecules, physical-chemical results on the transfer of animal-origin HA by PLD are extremely interesting due to the stoichiometric transfer possibilities of this technique. The points of interest of this paper are the origin of HA from various sustainable resources, the extraction methods employed, the supplemental functional groups, and ions present in animal-origin HA targets and coatings as compared to synthetic HA, the coatings’ morphology function of the type of HA, and the structure and crystalline status after deposition (where properties were superior to synthetic HA), and the influence of various dopants on these properties. The most interesting studies published in the last decade in scientific literature were compared and morphological, elemental, structural, and mechanical data were compiled and interpreted. The biological response of different types of animal-origin apatites on a variety of cell types was qualitatively assessed by comparing MTS assay data of various studies, where the testing conditions were possible. Antibacterial and antifungal activity of some doped animal-origin HA coatings was also discussed.
Funder
Ministry of Research and Innovation, CNCS-UEFISCDI
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献