Abstract
Biomaterial surface modification represents an important approach to obtain a better integration of the material in surrounding tissues. Different techniques are focused on improving cell support as well as avoiding efficiently the development of infections, such as by modifying the biomaterial surface with amine groups (–NH2). Previous studies showed that –NH2 groups could promote cell adhesion and proliferation. Moreover, these chemical functionalities may be used to facilitate the attachment of molecules such as proteins or to endow antimicrobial properties. This mini-review gives an overview of different techniques which have been used to obtain amine-rich coatings such as plasma methods and adsorption of biomolecules. In fact, different plasma treatment methods are commonly used with ammonia gas or by polymerization of precursors such as allylamine, as well as coatings of proteins (for example, collagen) or polymers containing –NH2 groups (for example, polyethyleneimine). Moreover, this mini-review will present the methods used to characterize such coatings and, in particular, quantify the –NH2 groups present on the surface by using dyes or chemical derivatization methods.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Reference104 articles.
1. Health Care-Associated Infections—Fact Sheethttps://www.who.int/gpsc/country_work/gpsc_ccisc_fact_sheet_en.pdf
2. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nationshttps://www.jpiamr.eu/wp-content/uploads/2014/12/AMR-Review-Paper-Tackling-a-crisis-for-the-health-and-wealth-of-nations_1-2.pdf
3. Impact of surgical site infection on healthcare costs and patient outcomes: a systematic review in six European countries
4. Fabrication and Characterization of Organic Thin Films for Applications in Tissue Engineering: Emphasis on Cell-Surface Interactions
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献