Effect of Mixing and Curing System on Carbon Fixation Amount and Performance of Circulating Fluidized Bed Fly Ash Cement Cementitious Material System

Author:

Zhang Hao1,Li Hui12,Wang Kai3ORCID

Affiliation:

1. College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

2. Shaaxi Ecological Cement & Concrete Engineering Technology Research Center, Xi’an 710055, China

3. School of Electrical Engineering, Qingdao University, Qingdao 266071, China

Abstract

The use of industrial solid waste to capture and fix CO2 is a promising technology for CO2 sequestration. A thermogravimetric analyzer and CO2 cement hydration mixing device were used to study the effects of mixing method, curing system, temperature, CO2 concentration and other factors on the carbon fixation amount and performance of the circulating fluidized bed fly ash cement-based material system. The results showed that the carbon fixation and early strength of the cementitious materials could be improved by adding CO2 in the stirring process and making CO2 directly participate in the process reaction. The cementing materials samples prepared with CO2 were cured in a standard curing box for 2 days and a carbon atmosphere for 1 day, the carbon fixation amount of the cementing material was increased by 33% and the compressive strength of the cementing material was also improved. This is because under the combined action of carbon mixing and carbon curing, the prepared binding materials produced more Ca(OH)2 in the early stage, and it reacts with the introduced CO2 to form CaCO3. The strength of the calcium carbonate crystals is higher than the strength of the earlier stage of cement, and at the same time, the samples would solidify more CO2. Considering the carbon fixation amount, sample performance and solid waste utilization rate, the best conditions for the cementing materials are as follows: the content of the circulating fluidized bed fly ash (CFA) was 35%, the concentration of carbon curing was 30%, the curing temperature was 40 ℃, the water-binder ratio was 0.4, and the carbon fixation amount of the cementing material could reach about 20%. The use of CFBFA to solidify and storge CO2 is not only a new way to utilize high value-added fly ash resources, but also beneficial for reducing industrial carbon dioxide emissions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3