Damage Assessment and Fracture Resistance of Functionally Graded Advanced Thermal Barrier Coating Systems: Experimental and Analytical Modeling Approach

Author:

Kumar Amarnath,Patnaik Prakash C.,Chen Kuiying

Abstract

Enhancement of stability, durability, and performance of thermal barrier coating (TBC) systems providing thermal insulation to aero-propulsion hot-section components is a pressing industrial need. An experimental program was undertaken with thermally cycled eight wt.% yttria stabilized zirconia (YSZ) TBC to examine the progressive and sequential physical damage and coating failure. A linear relation for parameterized thermally grown oxide (TGO) growth rate and crack length was evident when plotted against parameterized thermal cycling up to 430 cycles. An exponential function thereafter with the thermal cycling observed irrespective of coating processing. A phenomenological model for the TBC delamination is proposed based on TGO initiation, growth, and profile changes. An isostrain-based simplistic fracture mechanical model is presented and simulations carried out for functionally graded (FG) TBC systems to analyze the cracking instability and fracture resistance. A few realistic FG TBCs architectures were considered, exploiting the compositional, dimensional, and other parameters for simulations using the model. Normalized stress intensity factor, K1/K0 as an effective design parameter in evaluating the fracture resistance of the interfaces is proposed. The elastic modulus difference between adjacent FG layers showed stronger influence on K1/K0 than the layer thickness. Two advanced and promising TBC materials were also taken into consideration, namely gadolinium zirconate and lanthanum zirconate. Fracture resistance of both double layer and trilayer hybrid architectures were also simulated and analyzed.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3