Effects of the Shot Peening Process on Corrosion Resistance of Aluminum Alloy: A Review

Author:

Huang Hao,Niu Jintao,Xing Xiangtao,Lin Qichao,Chen HongtangORCID,Qiao YangORCID

Abstract

The high humidity of marine atmosphere and the existence of corrosive chloride ions lead to the premature corrosion failure of aluminum alloy components. The development of surface-strengthening technology provides an opportunity to prolong their service life spans. As a mature surface-strengthening technology, the shot peening process is widely used, owing to its advantages over other strengthening technologies, including its easy operation and high production rate. The shot-peened surface integrity depends on shot peening variables that introduces the thermomechanical effect to the deformed surface layer. When the inappropriate shot peening parameters are adopted, the shot-peened surface integrity could be deteriorated, which further weakens the corrosion performance of the surface. Therefore, it is essential to optimize shot peening process variables with the consideration of the material and its application. In this paper, the strengthening mechanism of the shot peening process was firstly elaborated, and then the effects of process parameters on the surface integrity of aluminum alloy were reviewed. The relationship between the surface integrity and corrosion resistance was also revealed. Two directions, including the application of the surface temperature rise during the shot peening process and the shot-peened surface roughening, are proposed.

Funder

Shandong Higher Education Youth Innovation and Technology Support Program

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3