Preparation and Characterization of Ag2O Thin Films on Construction Textiles for Optoelectronics Applications: Effect of Aging on Its Optical and Structural Properties

Author:

Krylova Valentina1ORCID,Dobilaitė Vaida2,Jucienė Milda2ORCID

Affiliation:

1. Faculty of Chemical Technology, Kaunas University of Technology, 50254 Kaunas, Lithuania

2. Institute of Architecture and Construction, Kaunas University of Technology, 44405 Kaunas, Lithuania

Abstract

The aim of the research was to modify the surface of construction textiles by means of the use of thin silver oxide films, investigate the structure and optical and mechanical properties, and determine the structure, optical and mechanical properties of the aged composites. Thin films of silver oxide (Ag2O) were synthesized on a flexible PET/PVC construction textile (CT); the structural, optical, and physical properties, as well as the effect of artificial aging on these properties, were investigated. The SILAR method (successive ionic layer adsorption and reaction) was used to synthesize thin Ag2O films on the CT surface. Before the thin films were deposited, the CT surface was mechanically roughened and pretreated with acidic and alkaline solutions at an elevated temperature. XRD analysis showed that the deposited films were a polycrystalline mixed phase material consisting of Ag2O, AgO, and metallic Ag. Diffuse reflectance spectra in the ultraviolet and visible ranges (UV-Vis) were used to study the optical properties of the deposited thin films. The synthesized Ag2O/CT composites were direct-gap semiconductors (the optical band gap (Eg) was 0.89 ± 0.02 eV). Eg and refractive indices (n) increased as the aging tests were carried out. Higher Eg and n meant that the composites were a good material for optoelectronic applications. The results showed that, after modification, the structural properties and tear strength of the PET/PVC fabric remained the same while the tensile strength decreased. The same tendencies remained after artificial aging.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3