Comparison of Friction Behaviour of Titanium Grade 2 after Non-Contact Boriding in Oxygen-Containing Medium with Gas Nitriding

Author:

Lavrys Serhii1ORCID,Pohrelyuk Iryna1ORCID,Tkachuk Oleh1,Padgurskas Juozas2,Trush Vasyl1,Proskurnyak Roman1ORCID

Affiliation:

1. Department of Material Science Bases of Surface Engineering, Karpenko Physico-Mechanical Institute of the NAS of Ukraine, 79060 Lviv, Ukraine

2. Department of Mechanical, Energy and Biotechnology Engineering, Vytautas Magnus University, 44248 Kaunas, Lithuania

Abstract

The surface characteristics and friction behaviour of titanium Grade 2 with modified nitride (TiN, Ti2N) and boride (TiB) compound layers were investigated. It was shown that during non-contact boriding in oxygen-containing medium of titanium, the diffusion processes take place mainly by the interscale mechanism; however, during nitriding, besides the traditional interscale diffusion mechanism, the grain boundary mechanism of diffusion of nitrogen atoms is also realized. The optimal set of surface roughness parameters (height and step parameters, a combination of kurtosis and asymmetry, and profile reference curve parameters) was obtained after boriding. It was determined that the intensity of the adhesive wear of the tribo-pairs with stainless steel and ultrahigh molecular weight polyethylene under dry sliding conditions was influenced not only by the hardness but also roughness of the modified surface layer. The lowest friction coefficient was fixed for the TiB compound layer in both tribo-pairs.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3