Sensitive Fingerprint Detection Using Biocompatible Mesoporous Silica Nanoparticle Coating on Non-Porous Surfaces

Author:

Bhati Kajol1,Bajpai Tripathy Divya1ORCID,Kumaravel Vignesh2ORCID,Sudhani Hemanth3ORCID,Ali Sajad4,Choudhary Rita5,Shukla Shruti5

Affiliation:

1. Division of Forensic Science, School of Basic and Applied Sciences, Galgotias University, Greater Noida 201301, India

2. International Centre for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland

3. Department of Biotechnology, School of Liberal Arts & Science, Sree Vidyanikethan Engineering College, Mohan Babu University, Tirupati 517102, India

4. Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea

5. Division of Sustainable Agriculture, The Energy and Resources Institute (TERI), New Delhi 110003, India

Abstract

In recent years, the development and application of biocompatible nanomaterials in the detection of fingerprints have become a major focus for the forensic sector and crime investigators. This study aims to synthesize biocompatible silica nanoparticles (Si NPs) through cost-effective green methods and will be used to detect a latent fingerprint on a non-porous surface. As a type of environmentally friendly nanomaterial, Si NPs were prepared via an oil–water mixed micro-emulsion templating (MET) approach. Their characteristics and optical properties were measured using EDX-SEM, HR-TEM, FTIR, XRD, and UV–visible absorption. The biocompatibility of the synthesized Si NPs in terms of cell viability was observed, even at high concentrations (83.46% and 75.28% at 20 and 50 mg mL−1, respectively). The developed Si NPs were tested on different surfaces, including plastic, glass, silicon, steel, and soft plastic for the detection of crime scene fingerprints. In this research, it was found that the Si NPs were of the size of 100–150 nm. Results confirmed that synthesized mesoporous Si NPs can be used to detect latent fingerprints on multiple non-porous surfaces and were easy to detect under a UV lamp at 395 nm. These findings reinforce the suggestion that the developed Si NP coating has a high potential to increase sensitive and stable crime traces for forensic latent fingerprint detection, even in packaged food with different packaging surfaces.

Funder

DBT-Ramalingaswamy

International Research Agendas PLUS program of the Foundation for Polish Science, co-financed by the European Union under the European Regional Development Fund

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3