Microstructure and Wear Resistance of TiCp/Ti6Al4V Composite Coatings by Follow-Up Ultrasonic-Assisted Laser Additive Manufacturing

Author:

Niu Fangyong,Li Yang,Song Chenchen,Yan Xinrui,Zhang Ziao,Ma Guangyi,Wu Dongjiang

Abstract

With the increasing demand for the high agility and fast response of high-level equipment in the aerospace and energy power fields, it is increasingly urgent to improve the performance of the high-temperature and wear resistance of the corresponding high-level components. Ceramic-reinforced titanium matrix composites have excellent high-temperature and wear resistance, but, in laser additive manufacturing, the primary ceramic phase is coarse, and the morphology of the ceramic phase is difficult to control, which limits their further development. In this investigation, a follow-up ultrasonic-assisted laser-additive-manufacturing method was proposed to prepare a 30 wt.% TiC/Ti6Al4V composite coating on a Ti6Al4V surface. Under the effects of ultrasonic cavitation and acoustic streaming, the content of the unmelted TiC was reduced, the dendritic primary TiC in the solidification process was broken and the distribution uniformity of the primary TiC was improved. The content of the unmelted TiC in the composite coating decreased significantly under ultrasonic action, and it was only 50.23% of that without ultrasonic action. At the same time, the average size of the dendritic primary TiC in the composite coating decreased from 61.59 μm to 27.04 μm, which was 56.10% smaller than that without ultrasonic action. The average microhardness of the composite coating reached the maximum of 656.70 HV0.2 under ultrasonic power, and it was 83.21% higher than that of the Ti6Al4V substrate, and 26.44% higher than that of the composite coating without ultrasonic power. Due to the ultrasonic-cavitation and acoustic-streaming effects, the content of the unmelted TiC obviously decreased, so that the average friction coefficient of the composite coating increased, and the wear mechanism changed from abrasive wear to adhesive wear.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference31 articles.

1. Research progress of laser cladding titanium carbide reinforced titanium-based composite coating;Zhang;Surf. Technol.,2020

2. Time dependence of microstructure and hardness in plasma carbonized Ti–6Al–4V alloys

3. Creep properties and effect factors of hot continuous rolled Ti-6Al-4V alloy;Xiao;Mater. Sci. Eng. A,2011

4. Rapid preparation of TiC reinforced Ti6Al4V based composites by carburizing method through spark plasma sintering technique

5. Magnetron-sputtered TixNy thin films applied on titanium-based alloys for biomedical applications: Composition-microstructure-property relationships

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3