Enhanced Electrical Properties and Stability of P-Type Conduction in ZnO Transparent Semiconductor Thin Films by Co-Doping Ga and N

Author:

Tsay Chien-YieORCID,Chiu Wan-Yu

Abstract

P-type ZnO transparent semiconductor thin films were prepared on glass substrates by the sol-gel spin-coating process with N doping and Ga–N co-doping. Comparative studies of the microstructural features, optical properties, and electrical characteristics of ZnO, N-doped ZnO (ZnO:N), and Ga–N co-doped ZnO (ZnO:Ga–N) thin films are reported in this paper. Each as-coated sol-gel film was preheated at 300 °C for 10 min in air and then annealed at 500 °C for 1 h in oxygen ambient. X-ray diffraction (XRD) examination confirmed that these ZnO-based thin films had a polycrystalline nature and an entirely wurtzite structure. The incorporation of N and Ga–N into ZnO thin films obviously refined the microstructures, reduced surface roughness, and enhanced the transparency in the visible range. X-ray photoelectron spectroscopy (XPS) analysis confirmed the incorporation of N and Ga–N into the ZnO:N and ZnO:Ga–N thin films, respectively. The room temperature PL spectra exhibited a prominent peak and a broad band, which corresponded to the near-band edge emission and deep-level emission. Hall measurement revealed that the ZnO semiconductor thin films were converted from n-type to p-type after incorporation of N into ZnO nanocrystals, and they had a mean hole concentration of 1.83 × 1015 cm−3 and a mean resistivity of 385.4 Ω·cm. In addition, the Ga–N co-doped ZnO thin film showed good p-type conductivity with a hole concentration approaching 4.0 × 1017 cm−3 and a low resistivity of 5.09 Ω·cm. The Ga–N co-doped thin films showed relatively stable p-type conduction (>three weeks) compared with the N-doped thin films.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3