Paint Pull-Off Strength and Permeability in Nanosilver-Impregnated and Heat-Treated Beech Wood

Author:

Taghiyari ,Esmailpour ,Papadopoulos

Abstract

The effects of impregnation with nanosilver suspension as well as heat treatment on pull-off adhesion strength and specific air permeability in beech specimens were studied here. The size range of silver nanoparticles was 30–80 nm. The cross-section of specimens was cold-sprayed with unpigmented sealer-clear, polyester, and lacquer paints. Heat treatment, as the most commonly used wood modification, was applied at three different temperatures of 145, 165, and 185 °C. Results showed that the highest and lowest pull-off strengths were found in the un-impregnated and unheated specimens painted with polyester (8.98 MPa) and the unpainted unheated nanosilver-impregnated specimens (3.10 MPa), respectively. Impregnation with nanosilver resulted in the rupture of perforation plates and pit openings, and eventually, permeability increased significantly. As for the pull-off adhesion strength, the increased permeability resulted in the adhesive being penetrated in to the pores in the wood substrate, and eventually, a significant decrease in the pull-off strengths occurred. No significant correlation was found between pull-off strength versus specific air permeability, although both properties depend on the porous structure. This was due to the fact that permeability depends on the continuous pore system, while pull-off strength is dependent on the surface pore system of the substrate.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference39 articles.

1. Flow in Wood;Siau,1971

2. Wood: Influence of Moisture on Physical Properties;Siau,1995

3. Transport Processes in Wood;Siau,2011

4. Wood-Water Relations;Skaar,1988

5. Influence of temperature on cracking and mechanical properties of wood during wood drying—A review;Oltean;BioResources,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3