Development of Method for Applying Multilayer Gradient Thermal Protective Coatings Using Detonation Spraying

Author:

Buitkenov Dastan1ORCID,Nabioldina Aiym1ORCID,Raisov Nurmakhanbet12ORCID

Affiliation:

1. Research Center “Surface Engineering and Tribology”, Sarsen Amanzholov East Kazakhstan University, Ust-Kamenogorsk 070000, Kazakhstan

2. INNOTECHMASH Engineering Center, Ust-Kamenogorsk 070000, Kazakhstan

Abstract

In this work, multilayer gradient coatings obtained by detonation spraying were studied. To obtain a multilayer gradient coating by detonation spraying, two modes with different numbers of shots of NiCrAlY and YSZ were developed. The presented results demonstrate the effectiveness of creating a gradient structure in coatings, ensuring a smooth transition from metal to ceramic materials. Morphological analysis of the coatings confirmed a layered gradient structure, consisting of a lower metallic (NiCrAlY) layer and an upper ceramic (YSZ) layer. The variation in the contents of elements along the thickness of the coatings indicates the formation of a gradient structure. X-ray analysis shows that all peaks in the X-ray diffraction patterns correspond to a single ZrO2 phase, indicating the formation of a non-transformable tetragonal primary (t′) phase characteristic of the thermal protective coatings. This phase is known for its stability and resistance to phase transformation under changing operating temperature conditions. As the thickness of the coatings increased, an improvement in their mechanical characteristics was found, such as a decrease in the coefficient of friction, an increase in hardness, and an increase in surface roughness. These properties make such coatings more resistant to mechanical wear, especially under sliding conditions, which confirms their prospects for use in a variety of engineering applications, including aerospace and power generation.

Funder

the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3