Dynamic Modeling and Simulation Analysis of Inter-Shaft Bearings with Local Defects Considering Elasto-Hydrodynamic Lubrication

Author:

Tian JingORCID,Ai Xinping,Zhang Fengling,Wang Zhi,Wang Cai,Chen Yingtao

Abstract

As an important component of large engines, inter-shaft bearing is easily damaged due to its poor working conditions. By analyzing the time–frequency distribution rules of fault signals and the evolution law of micro-faults, the bearing failure mechanism can be revealed, and the bearing failure can be monitored in real time and prevented in advance. For the purpose of studying the mechanism of inter-shaft bearing faults, a 4-DOF (degree of freedom) dynamic model of inter-shaft bearing with local defects considering elasto-hydrodynamic lubrication (EHL) is proposed. Based on the established dynamic model, the impact characteristics and distribution rules of the fault signals of the bearing are accurately simulated, and the evolution law of the micro-faults is also analyzed. The effects of different speeds, loads and defect widths on maximum value (MV), absolute mean value (AMV), effective value (EV), amplitude of square root (AST), kurtosis factor (KF), impulse factor (IF), peak factor (PF) and shape factor (SF) are obtained. The findings show that the vibration amplitude of the bearing increases with the increase in defect size, and the faults are easier to diagnose accordingly. At the same time, PF, KF and IF are very sensitive to the initial failure of bearings. With the development of faults, the overall trend of AMV, AST and EV are relatively stable. The PF is sensitive to the change of rotating speeds and defect widths. The SF is insensitive to the change of rotating speeds, loads and defect widths. This lays a foundation for the research of monitoring and diagnosis methods of aeroengine inter-shaft bearing fault.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province of China

Liaoning province Department of Education fund

Research Start-up Funding of Shenyang Aerospace University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3