Exciton-Assisted UV Stimulated Emission with Incoherent Feedback in Polydisperse Crystalline ZnO Powder

Author:

Fedorenko Leonid,Litovchenko Volodymyr,Naumov VadymORCID,Korbutyak Dmytro,Yukhymchuk Volodymyr,Gudymenko Olexander,Dubikovskyi Olexander,Mimura Hidenori,Medvids Arturs

Abstract

A comparative analysis of the features of UV-stimulated emission (SE) of various disordered active materials based on ZnO crystallites for a random laser (RL) was carried out. The superlinear increase in the intensity of the UV photoluminescence (PL) band of polydisperse nano-micro-crystalline (PNMC) ZnO powder at a wavelength of λ = 387 nm and some narrowing of its halfwidth in the range of 20 ÷ 15 nm with increasing pump intensity indicates random lasing with incoherent feedback (FB). The properties of similar UV PL bands under the same conditions of a thin film containing hexagonal ZnO microdisks, as well as samples of monodisperse ZnO nanopowder with nanoparticle sizes of 100 nm, indicate stimulated radiation with coherent feedback. It is shown that, among the studied materials, PNMC ZnO powder with widely dispersed crystallites ranges in size from 50 nm to several microns, which in turn, consists of nanograins with dimensions of ~25 nm, is the most suitable for creating a random laser with incoherent feedback at room temperature. The dominant factor of UV SE in PNMC ZnO powder is radiation transitions under exciton–exciton scattering conditions. The possible mechanisms of this random emission with the continuous spectrum are discussed. The average optical gain coefficient αg at λ = 387 nm in this RL system is estimated as αg~150 cm−1.

Funder

Riga Technical University

Research Institute of Electronics, Shizuoka University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3