Effect of Y2O3 Content on Microstructure and Corrosion Properties of Laser Cladding Ni-Based/WC Composite Coated on 316L Substrate

Author:

Liang Feilong12ORCID,Li Kaiyue3,Shi Wenqing24ORCID,Zhu Zhikai3

Affiliation:

1. Naval Architecture and Shipping College, Guangdong Ocean University, Zhanjiang 524088, China

2. Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, China

3. School of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China

4. School of Materials Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China

Abstract

To improve the corrosion resistance of 316L substrate and lengthen its useful life in marine environments, Ni-based/WC/Y2O3 cladding layers with different Y2O3 contents were fabricated on 316L stainless steel using laser cladding technology. The influence of Y2O3 additives on the microstructure and properties of the cladding coatings was investigated by using scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, a microhardness tester, an electrochemical workstation and a tribometer. Results show that the metallurgical bonding is well formed between the coating and the 316L substrate. The coating consisted primarily of γ-Ni phase and carbides. Adding an appropriate amount of Y2O3 can effectively refine the microstructure and inhibit the precipitation of the carbide hard phase; in addition, the added rare earth element can promote the solid-solution-strengthening effect of the cladding coatings, thus improving the microhardness and wear resistance of the cladding coatings and their electrochemical corrosion property in 3.5 wt% NaCl solution. The hardness of the Ni-based/WC coatings was substantially higher than that of the substrate, and it was greatest at a Y2O3 content of 1%. The corrosion and wear resistance of Y2O3-modified Ni-based/WC composite coatings are significantly better than those of the composite coating without Y2O3.

Funder

Natural Science Foundation of China

Special Fund for Key Projects of Colleges and Universities in Guangdong Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3