Study on Diffusion Kinetics and Law of Chromium on the Surface of Low-Carbon Steel

Author:

Zhang Shixian,Zhang Haichao,Zhang Hongbo,Zhao Xiaoping,Li Yungang

Abstract

Cr/low-carbon steel surface composites were prepared by aqueous solution co-deposition and high-temperature solid-state diffusion technology, and the macro rule of the solid-state diffusion of chromium on the surface of low-carbon steel was analyzed. The molecular dynamics (MD) method was used to simulate and calculate the diffusion process of the Cr/Fe interface, and the macro and micro diffusion mechanisms were analyzed. The results show that the diffusion of the chromium in iron is the combined action of the temperature, crystal structure and lattice distortion, and the diffusion coefficients of chromium in α-Fe and γ-Fe have little difference. The vacancy diffusion mechanism of the first adjacent transition is the main diffusion mode. In practice, chromium atoms diffuse along the grain boundaries of the low-carbon steel matrix and provide pinning at the grain boundaries to prevent grain growth. The simulation law is in good agreement with the experimental law. The variation law of the average diffusion coefficient of chromium atoms with temperature is obtained. The diffusion rate of chromium in the bcc crystal structure is obviously higher than that in the fcc crystal structure. In the same crystal structure, the diffusion coefficient of chromium increases with the increase in temperature. However, in the lattice transition temperature region, the diffusion coefficient of chromium gradually decreases with the increase in temperature until the end of the transformation.

Funder

National Natural Science Foundation of China

Hebei Province “three three three talent project” Funding Project

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3