Study on Adhesion Properties and Process Parameters of Electroless Deposited Ni-P Alloy for PEEK and Its Modified Materials

Author:

Gao Shang1,Wu Chongyao1,Yang Xin1,Cheng Jirui1,Kang Renke1

Affiliation:

1. Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China

Abstract

Polyetheretherketone (PEEK) and its fiber-reinforced materials are thermoplastic polymer materials with broad application prospects. Depositing Ni-P alloy on them can improve their poor conductivity and electromagnetic shielding performance, and further expand their application field. The application effect of the plated parts is significantly impacted by the bonding strength between PEEK and coating. The bonding strength between non-metallic substrate and coating is largely influenced by the surface characteristics of the substrate. Therefore, it is significant to study how the surface roughness of PEEK materials and the modified fibers in materials affect the adhesion of the coating. In this study, Ni-P alloy was electroless deposited on PEEK, 30% carbon-fiber-reinforced PEEK (CF30/PEEK), and 30% glass-fiber-reinforced PEEK (GF30/PEEK) with varying surface roughness. The influence of surface roughness and modified fibers on the coating adhesion was studied. Additionally, the effect of the concentrations of nickel sulfate, sodium hypophosphite, pH, and temperature on the deposition rate of the coating was investigated for the three materials. Based on the highest deposition rate, the process parameters were then optimized. The results demonstrated that as surface roughness increased, adhesion between substrate and coating first increased and then decreased. The surface roughness Ra of 0.4 μm produced the highest coating adhesion. Additionally, fiber-reinforced PEEK adhered to coatings more effectively than PEEK did. The mechanism of the difference in bonding strength between different PEEK-modified materials and coatings was revealed. The optimal process parameters were: nickel sulfate: 25 g/L, sodium hypophosphite: 30 g/L, pH: 5.0, and temperature: 70 °C.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Major Science and Technology Project of Henan Province of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3