Author:
Sha Yuanpeng,Lu Changhou,Pan Wei,Chen Shujiang,Ge Peiqi
Abstract
The active controlled hydrostatic bearing is becoming more and more popular because of its accuracy, safety, as well as low vibration and noise. In this paper, we present a design approach for a hydrostatic thrust bearing system, where the analytical nonlinear state space equation of the system is established first, and then three kinds of control inputs are investigated and compared to each other. It is found that, by selecting the supply pressure as the control input, we could obtain an affine nonlinear system, which could be linearized by the feedback linearization method, and its robustness could be enhanced by the sliding mode control method. The tracking control law could be easily obtained with the linearized system. The simulation verifies the effectiveness of the nonlinear control law. The proposed nonlinear control model might have a positive effect on the improvement of the machining accuracy, safety, and vibration absorption.
Funder
Shandong Provincial Natural Science Foundation
National Natural Science Foundation of China
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献