Polymer Waveguide-Based Optical Sensors—Interest in Bio, Gas, Temperature, and Mechanical Sensing Applications

Author:

Khonina Svetlana N.12ORCID,Voronkov Grigory S.3ORCID,Grakhova Elizaveta P.3ORCID,Kazanskiy Nikolay L.12ORCID,Kutluyarov Ruslan V.3,Butt Muhammad A.1ORCID

Affiliation:

1. Samara National Research University, 443086 Samara, Russia

2. IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia

3. Ufa University of Science and Technology, 32, Z. Validi Street, 450076 Ufa, Russia

Abstract

In the realization of photonic integrated devices, materials such as polymers are crucial. Polymers have shown compatibility with several patterning techniques, are generally affordable, and may be functionalized to obtain desired optical, electrical, or mechanical characteristics. Polymer waveguides are a viable platform for optical connectivity since they are easily adaptable to on-chip and on-board integration and promise low propagation losses <1 dB/cm. Furthermore, polymer waveguides can be made to be extremely flexible, able to withstand bending, twisting, and even stretching. Optical sensing is an interesting field of research that is gaining popularity in polymer photonics. Due to its huge potential for use in several industries, polymer waveguide-based sensors have attracted a lot of attention. Due to their resilience to electromagnetic fields, optical sensors operate better in difficult situations, such as those found in electrical power generating and conversion facilities. In this review, the most widely used polymer materials are discussed for integrated photonics. Moreover, four significant sensing applications of polymer-waveguide based sensors which include biosensing, gas sensing, temperature sensing and mechanical sensing have been debated.

Funder

Ministry of Science and Higher Education of the Russian Federation

Russian Academy of Sciences

Ministry of Science and Higher Education of the Russian Federation within the state assignment for the UUST

Eurasian Scientific and Educational Center

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3