Self-Cleaning Coatings for the Protection of Cementitious Materials: The Effect of Carbon Dot Content on the Enhancement of Catalytic Activity of TiO2

Author:

Gryparis Charis,Krasoudaki ThemisORCID,Maravelaki Pagona-NoniORCID

Abstract

The urgent demand for pollution protection of monuments and buildings forced the interest towards specific preservation methods, such as the application of photocatalytic coatings with self-cleaning and protective activity. TiO2 photocatalysts without and with a variety of carbon dots loading (TC0, TC25–75) were synthesized via a green, simple, low cost and large-scale hydrothermal method using citric acid, hydroxylamine and titanium isopropoxide (TTIP) and resulted in uniform anatase phase structures. In photocatalysis experiments, TC25 and TC50 composites with 1:3 and 1:1 mass ratio of C-dots solution to TTIP, respectively, showed the best degradation efficiency for methyl orange (MO) under UV-A light, simulated solar light and sunlight compared to TiO2, commercial Au/TiO2 (TAu) and catalysts with higher C-dot loading (TC62.5 and TC75). Treatment of cement mortars with a mixture of photocatalyst and a consolidant (FX-C) provided self-cleaning activity under UV-A and visible light. This study produced a variety of new, durable, heavy metal-free C-dots/TiO2 photocatalysts that operate well under outdoor weather conditions, evidencing the C-dot dosage-dependent performance. For the building protection against pollution, nanostructured photocatalytic films were proposed with consolidation and self-cleaning ability under solar irradiation, deriving from combined protective silica-based agents and TiO2 photocatalysts free or with low C-dot content.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3