Numerical Simulation of Graphene Growth by Chemical Vapor Deposition Based on Tesla Valve Structure

Author:

Yang Bo12,Yang Ni13,Zhao Dan1,Chen Fengyang1,Yuan Xingping1,Kou Bin1,Hou Yanqing1,Xie Gang13

Affiliation:

1. Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550014, China

3. Kunming Metallurgical Research Institute, Kunming 650093, China

Abstract

Chemical vapor deposition (CVD) has become an important method for growing graphene on copper substrates in order to obtain graphene samples of high quality and density. This paper mainly focuses on the fluid flow and transmission phenomenon in the reactor under different process operating conditions and reactor structures. Two macroscopic physical parameters that are established as important for CVD growth are temperature and pressure. Based on the special structure of a miniature T45-R Tesla valve acting as a CVD reactor structure, this study uses numerical simulation to determine the effect of the pressure field inside a Tesla valve on graphene synthesis and temperature variation on the graphene surface deposition rate. This macroscopic numerical modeling was compared to the existing straight tube model and found to improve the graphene surface deposition rate by two orders of magnitude when the 1290–1310 K reaction temperature range inside the Tesla valve was maintained and verified through the experiment. This study provides a reference basis for optimizing the reactor geometry design and the effects of changing the operating parameters on carbon deposition rates during a CVD reaction, and will furthermore benefit future research on the preparation of high-quality, large-area, and high-density graphene by CVD.

Funder

National Natural Science Foundation of China

Key Science and Technology Support Project of China

Science and Technology Foundation of China

Natural Science Foundation of Education Commission

Science & Technology Commission

Provincial Teaching Project

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3