Abstract
The crystalline blockage of tunnel drainage pipes in a karst area seriously affects the normal operation of drainage system and buries hidden dangers for the normal operation of the tunnel. In order to obtain the influencing factors and laws of tunnel drainage pipe crystallization in a karst area, based on the field investigation of crystallization pipe plugging, the effects of groundwater velocity, drainage pipe diameter, drainage pipe material, and structure on the crystallization law of tunnel drainage pipe in karst area are studied by indoor model test. The results show that: (1) With the increase of drainage pipe diameter (20–32 mm), the crystallinity of drainage pipes first increases and then decreases. (2) With the increase of water velocity in the drainage pipe (22.0–63.5 cm·s−1), the crystallinity of the drainage pipes gradually decreases from 1.20 g to 0.70 g. (3) The crystallinity of existing material drainage pipe is: M3 (poly tetra fluoroethylene) > M2 (pentatricopeptide repeats) > M4 (high density polyethylene) > M1 (polyvinyl chloride); M8 (polyvinyl chloride + coil magnetic field) is used to change the crystallinity of drain pipe wall material. (4) When the groundwater flow rate is 34.5 cm·s−1, M1 (polyvinyl chloride) and M8 (polyvinyl chloride + coil magnetic field) can be selected for the tunnel drainage pipe. The research on the influencing factors of tunnel drainage pipe crystallization plugging fills a gap in the research of tunnel drainage pipe crystallization plugging. The research results can provide a basis for the prevention and treatment technology of tunnel drainage pipe crystallization plugging.
Funder
Scientific Research Project of the Emei Hanyuan Expressway Project
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献