Author:
Fang Zhe,Ding Huili,Li Ping,Qiao Huijie,Liang Erjun,Jia Yu,Guan Shaokang
Abstract
Functional Arg-Gly-Asp (RGD) tripeptide has a tremendous potential in clinical applications to accelerate the endothelialization of Magnesium (Mg) alloy vascular stent surface. The interaction mechanism of RGD on different surfaces of Mg and Mg alloy is important for promoting the development of Mg alloy vascular stent, yet still unclear. In the present work, first-principles calculation within density functional theory (DFT) was performed to investigate the interaction mechanism. The electron redistribution, effect of alloying elements and changes in the density of states of the adsorption systems were studied. The results revealed that RGD interacted with different surfaces of Mg (0001), Mg(112¯0) and Mg(101¯1) through ligand covalent bond; the pronounced localization of electrons of Mg(112¯0) and Mg(101¯1) surfaces promoted the adsorption of RGD tripeptide compared with that on the Mg(0001) surface; Zn/Y/Nd alloying elements improved the adsorption of RGD. Calculated results could provide insight for the interaction mechanism of biomolecule on the Mg and Mg-based alloy surfaces, and point out some directions for the future experimental efforts.
Funder
National Key Research and Development Program of China
Key Projects of the Joint Fund of the National Natural Science Foundation of China
Youth Fund Project of Zhongyuan University of Technology
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献