The Modeling of Self-Consistent Electron–Deformation–Diffusion Effects in Thin Films with Lattice Parameter Mismatch

Author:

Kuzyk Oleh1ORCID,Dan’kiv Olesya1ORCID,Stolyarchuk Ihor1ORCID,Peleshchak Roman12,Pavlovskyy Yuriy1ORCID

Affiliation:

1. Department of Physics and Information Systems, Drohobych Ivan Franko State Pedagogical University, 24, Ivan Franko Street, 82100 Drohobych, Ukraine

2. Department of Information Systems and Networks, Lviv Polytechnic National University, 12, Stepan Bandera Street, 79000 Lviv, Ukraine

Abstract

In our work, the model of self-consistent electron–deformation–diffusion effects in thin films grown on substrate with the mismatch of lattice parameters of the contacting materials is constructed. The proposed theory self-consistently takes into account the interaction of the elastic field (created by the mismatch of lattice parameters of the film and the substrate, and point defects) with the diffusion processes of point defects and the electron subsystem of semiconductor film. Within the framework of the developed model, the spatial distribution of deformation, concentration of defects, conduction electrons and electric field intensity is investigated, depending on the value of the mismatch, the type of defects, the average concentrations of point defects and conduction electrons. It is established that the coordinate dependence of deformation and the concentration profile of defects of the type of stretching (compression) centers, along the axis of growth of the strained film, have a non-monotonic character with minima (maxima), the positions of which are determined by the average concentration of point defects. It is shown that due to the electron–deformation interaction in film with a lattice parameter mismatch, the spatial redistribution of conduction electrons is observed and n-n+ transitions can occur. Information about the self-consistent spatial redistribution of point defects, electrons and deformation of the crystal lattice in semiconductor materials is necessary for understanding the problems of their stability and degradation of nano-optoelectronic devices operating under conditions of intense irradiation.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3