Abstract
Previous research confirmed that Pt addition induced a prominent refinement effect of CrN coating, resulting in an enhanced conductivity and corrosion resistance. In this work, a detailed finite element simulation and scratch test were employed to calculate and characterize the fracture failure behaviors (stress distribution, crack damage process, critical coating load, and coating–substrate adhesion energy) of CrN coatings with different Pt contents. Simulation results showed that the synergistic action of dynamic scratch load and extrusion load induced the fracture of the coatings. S11 and S22 caused transverse cracks in the CrN coating, S11 caused longitudinal cracks in the CrN-Pt coating and CrN-3Pt coatings, S22 led to the inclined propagation of cracks in these coatings, and S11 and S22 jointly induced the separation of the coating from the substrate. The doping Pt element in the CrN coating will make the coating easier to fracture and reduce the adhesion strength between the coating and substrate. Scratch test results revealed that adding Pt into the CrN coating will make this coating easier to fracture and cause more serious damage; the simulation results are in good accordance with the scratch test characterizations. The current founding provided a comprehensive understanding for the fracture damage mechanism of Pt-doped nitride coatings.
Funder
National Natural Science Foundation of China
Science and Technology Research of Liaoning Province Education Department
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献