Exploring the Effect of Pt Addition on the Fracture Behavior of CrN Coatings by Finite Element Simulation

Author:

Sun HaifengORCID,Zhang Weilun,Feng Yongjun,Hu Suying,Tian Hua,Xie Zhiwen

Abstract

Previous research confirmed that Pt addition induced a prominent refinement effect of CrN coating, resulting in an enhanced conductivity and corrosion resistance. In this work, a detailed finite element simulation and scratch test were employed to calculate and characterize the fracture failure behaviors (stress distribution, crack damage process, critical coating load, and coating–substrate adhesion energy) of CrN coatings with different Pt contents. Simulation results showed that the synergistic action of dynamic scratch load and extrusion load induced the fracture of the coatings. S11 and S22 caused transverse cracks in the CrN coating, S11 caused longitudinal cracks in the CrN-Pt coating and CrN-3Pt coatings, S22 led to the inclined propagation of cracks in these coatings, and S11 and S22 jointly induced the separation of the coating from the substrate. The doping Pt element in the CrN coating will make the coating easier to fracture and reduce the adhesion strength between the coating and substrate. Scratch test results revealed that adding Pt into the CrN coating will make this coating easier to fracture and cause more serious damage; the simulation results are in good accordance with the scratch test characterizations. The current founding provided a comprehensive understanding for the fracture damage mechanism of Pt-doped nitride coatings.

Funder

National Natural Science Foundation of China

Science and Technology Research of Liaoning Province Education Department

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3