Investigations on Forming Ether Coated Iron Nanoparticle Materials by First-Principle Calculations and Molecular Dynamic Simulations

Author:

Sun Junlei,Hui Shixuan,Liu Pingan,Sun Ruochen,Wang Mengjun

Abstract

The mechanism of coating effects between ether molecules and iron (Fe) nanoparticles was generally estimated using first-principle calculations and molecular dynamic (MD) simulations coupling with Fe (110) crystal layers and sphere models. In the present work, the optimized adsorption site and its energy were confirmed. The single sphere model in MD simulations was studied for typical adsorption behaviors, and the double sphere model was built to be more focused on the gap impact between two particles. In those obtained results, it is demonstrated that ether molecules were prone to be adsorbed on the long bridge site of the Fe (110) crystal while comparing with other potential sites. Although the coating was not completely uniform at early stages, the formation of ether layer ended up being equilibrated finally. Accompanied with charge transfer, those coated ether molecules exerted much binding force on the shell Fe atoms. Additionally, when free ether molecules were close to the gap between two nanoparticles, they were found to come under double adsorption effects. Although this effect might not be sufficient to keep them adsorbed, the movement of these ether molecules were hindered to some extent.

Funder

Fundamental Research Funds for Central Universities

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3