Quaternary Holey Carbon Nanohorns/SnO2/ZnO/PVP Nano-Hybrid as Sensing Element for Resistive-Type Humidity Sensor

Author:

Serban Bogdan-Catalin,Cobianu CornelORCID,Buiu OctavianORCID,Bumbac MariusORCID,Dumbravescu Niculae,Avramescu Viorel,Nicolescu Cristina MihaelaORCID,Brezeanu Mihai,Radulescu CristianaORCID,Craciun Gabriel,Romanitan CosminORCID,Comanescu Florin Constantin

Abstract

In this study, a resistive humidity sensor for moisture detection at room temperature is presented. The thin film proposed as a critical sensing element is based on a quaternary hybrid nanocomposite CNHox//SnO2/ZnO/PVP (oxidated carbon nanohorns–tin oxide–zinc oxide–polyvinylpyrrolidone) at the w/w/w/w ratios of 1.5/1/1/1 and 3/1/1/1. The sensing structure consists of a Si/SiO2 dielectric substrate and interdigitated transducers (IDT) electrodes, while the sensing film layer is deposited through the drop-casting method. Morphology and composition of the sensing layers were investigated through scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction, and Raman spectroscopy. Each quaternary hybrid nanocomposite-based thin film’s relative humidity (RH) sensing capability was analyzed by applying a direct current with known intensity between two electrodes and measuring the voltage difference when varying the RH from 0% to 100% in a humid nitrogen atmosphere. While the sensor with CNHox/SnO2/ZnO/PVP at 1.5/1/1/1 as the sensing layer has the better performance in terms of sensitivity, the structure employing CNHox//SnO2/ ZnO/PVP at 3/1/1/1 (mass ratio) as the sensing layer has a better performance in terms of linearity. The contribution of each component of the quaternary hybrid nanocomposites to the sensing performance is discussed in relation to their physical and chemical properties. Several alternative sensing mechanisms were taken into consideration and discussed. Based on the measured sensing results, we presume that the impact of the p-type semiconductor behavior of CNHox, in conjunction with the swelling of the hydrophilic polymer, is dominant and leads to the overall increasing resistance of the sensing film.

Funder

Consiliul National pentru Finantarea Invatamantului Superior

Ministry of Education

Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3