Abstract
This study aims to provide a computational algorithm which contributes to the understanding and implementation of carbon nanochimneys. The structure resembles a tube ending with an inverted funnel, with a connection region that uses non-hexagonal rings as defects in order to match the boundaries of the two linked nanostructures. They are important for applications such as thermal transport, gas storage, or separation. The algorithm is written in Python 3.7 and provides a .pdb file with the coordinates of all the atoms included in the system. The parameters that can be specified are the carbon nanotube dimensions, for either armchair or zigzag conformations, five levels of disclination for the carbon nanocone along with the base diameter of the latter.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献