Comparative Study on the Degradation of Two Self-Polishing Antifouling Coating Systems with Copper-Based Antifouling Agents

Author:

Zhang Hanlu,Cao Jingyi,Sun Li,Kong Fabao,Tang Jianhua,Zhao XuhuiORCID,Tang Yuming,Zuo Yu

Abstract

The degradation processes of two self-polishing antifouling coatings containing copper-based agents (CuSCN and Cu2O) in 3.5% NaCl solution and the protection effect of the coating systems were studied by electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM/EDS) methods. The results demonstrate that after immersion for 1525 d at room temperature, the two coating systems still have very good protection property for the 5083 Al alloy substrate, manifesting by the high value of the low-frequency impedance. Alternate high and low temperature immersion test (45 °C 12 h + 25 °C 12 h) leads to serious damage to the antifouling topcoat, and the failure is mainly manifested by many micro-pores and micro-cracks. Because the CuSCN antifouling agent particle has bigger diameter and slightly higher solubility than that of Cu2O agent, the micro-pores established after the agents dissolved and released during the hydrolysis process of the antifouling coating are relatively larger, which results in more decrease in the impedance and a worse protective property of the coating system for the substrate.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3