Abstract
The degradation processes of two self-polishing antifouling coatings containing copper-based agents (CuSCN and Cu2O) in 3.5% NaCl solution and the protection effect of the coating systems were studied by electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM/EDS) methods. The results demonstrate that after immersion for 1525 d at room temperature, the two coating systems still have very good protection property for the 5083 Al alloy substrate, manifesting by the high value of the low-frequency impedance. Alternate high and low temperature immersion test (45 °C 12 h + 25 °C 12 h) leads to serious damage to the antifouling topcoat, and the failure is mainly manifested by many micro-pores and micro-cracks. Because the CuSCN antifouling agent particle has bigger diameter and slightly higher solubility than that of Cu2O agent, the micro-pores established after the agents dissolved and released during the hydrolysis process of the antifouling coating are relatively larger, which results in more decrease in the impedance and a worse protective property of the coating system for the substrate.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献