Surface Deformation Recovery by Thermal Annealing of Thermal Plasma Sprayed Shape Memory NiTi Alloys

Author:

Samal Sneha1ORCID,Tomáštík Jan23ORCID,Čtvrtlík Radim23,Václavek Lukáš23,Molnárová Orsolya1ORCID,Šittner Petr1ORCID

Affiliation:

1. FZU-Institute of Physics of the Czech Academy of Sciences, 182 21 Prague, Czech Republic

2. Palacký University Olomouc, Faculty of Science, Joint Laboratory of Optics of Palacký University and Institute of Physics of the Czech Academy of Sciences, 17. listopadu 1192/12, 779 00 Olomouc, Czech Republic

3. Institute of Physics of the Czech Academy of Sciences, Joint Laboratory of Optics of Palacký University and Institute of Physics of the Czech Academy of Sciences, 17. listopadu 1154/50a, 779 00 Olomouc, Czech Republic

Abstract

The shape memory effect is the most important attribute of shape memory alloys where material can recover to its initial shape after deformation by heating above its transformation temperature. In this article, the thermally induced recovery of well-defined microscopic deformation in a NiTi shape memory alloy was investigated. Surface deformation was performed by indenting the plasma sprayed NiTi shape memory alloy in a martensitic phase at room temperature using spherical indenters. In this article, a series of indentations, scratch lines and wear lines were made on the surface of two different NiTi shape memory alloys at the micrometre scale using two spherical indenters with different radii. Three-dimensional imaging of indentation topography using scanning confocal microscopy provided direct evidence of the thermally induced martensitic transformation of these plasma sprayed thick films allowing for partial recovery on the micro-scale. The partial recovery is achieved at various indentation depths and for different scratches and wear volumes.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3