Effect of Particle In-Flight Behavior on the Microstructure and Fracture Toughness of YSZ TBCs Prepared by Plasma Spraying

Author:

Xiao Yanqiu,Ren Erzhou,Hu Mingyang,Liu KunORCID

Abstract

The present study aims to elaborate particle in-flight behavior during plasma spraying and its significance in determining the microstructure and mechanical properties of plasma sprayed yttria partially stabilized zirconia (YSZ) thermal barrier coatings (TBCs). The as-sprayed YSZ coatings were characterized in terms of defects (such as pores, unmelted particles and cracks) and fracture toughness. The results showed that, due to the higher temperature and velocity of in-flight particles in a supersonic atmospheric plasma spraying (SAPS) compared to that of atmospheric plasma spraying (APS), denser coatings were formed leading to a better fracture toughness. The percentage of defects of the microstructure was similar to the temperature and velocity of particles in-flight during plasma spraying. Furthermore, the structural defects had a strong effect on its mechanical behavior. The total defect percentage and fracture toughness in SAPS-TBCs spanned 6.9 ± 0.17%–13.26 ± 0.22% and 2.52 ± 0.06 MPa m1/2–1.78 ± 0.19 MPa m1/2; and 11.11 ± 0.36%–17.15 ± 0.67% and 2.13 ± 0.08 MPa m1/2–1.4 ± 0.12 MPa m1/2 in APS-TBCs.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3