A Method for Accelerated Natural Weathering of Wood Subsurface and Its Multilevel Characterization

Author:

Sandak AnnaORCID,Sandak Jakub,Noël Marion,Dimitriou AthanasiosORCID

Abstract

The function of altering weathering factors and degradation mechanisms are essential for understanding the weathering process of materials. The goal of this work was to develop a method for the acceleration of natural weathering and to investigate the molecular, microstructure and macrostructure degradation of wood caused by the process. Tests were performed in the whole month of July, which, according to previous research, is considered as the most severe for weathering of wood micro-sections. Sample appearance was evaluated by colour measurement. Scanning electron microscopy was used for evaluation of the structural integrity and changes in the microstructure of wood morphological components. Changes on the molecular level were assessed by means of FT-IR spectroscopy. Observation of the effects of weathering allowed a better understanding of the degradation process. Typical structural damage, such as cracks on bordered pits and cross-field pits, and, as a consequence, their erosion, revealed the sequence of the degradation process. It was confirmed that earlywood was more susceptible to damage than latewood. Even if the weathering test was conducted for a relatively short time (28 days) the ultra-thin wood samples changed noticeably. The progress of alteration was similar as usually noticed for wood surfaces, but occurred at shorter exposure times. The estimated acceleration factor was ×3, compare to the natural weathering kinetics of wood. The research methodology presented can be used for the determination of the weather dose-response models essential to estimate the future service life performance of timber elements.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference67 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3