Abstract
ZrNx (x = 0.67–1.38) films were fabricated through direct current magnetron sputtering by a varying nitrogen flow ratio [N2/(Ar + N2)] ranging from 0.4 to 1.0. The structural variation, bonding characteristics, and mechanical properties of the ZrNx films were investigated. The results indicated that the structure of the films prepared using a nitrogen flow ratio of 0.4 exhibited a crystalline cubic ZrN phase. The phase gradually changed to a mixture of crystalline ZrN and orthorhombic Zr3N4 followed by a Zr3N4 dominant phase as the N2 flow ratio increased up to >0.5 and >0.85, respectively. The bonding characteristics of the ZrNx films comprising Zr–N bonds of ZrN and Zr3N4 compounds were examined by X-ray photoelectron spectroscopy and were well correlated with the structural variation. With the formation of orthorhombic Zr3N4, the nanoindentation hardness and Young’s modulus levels of the ZrNx (x = 0.92–1.38) films exhibited insignificant variations ranging from 18.3 to 19.0 GPa and from 210 to 234 GPa, respectively.
Funder
Ministry of Science and Technology, Taiwan
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献