Structural and Chemical Peculiarities of Nitrogen-Doped Graphene Grown Using Direct Microwave Plasma-Enhanced Chemical Vapor Deposition

Author:

Meškinis ŠarūnasORCID,Gudaitis Rimantas,Andrulevičius MindaugasORCID,Lazauskas AlgirdasORCID

Abstract

Chemical vapor deposition (CVD) is an attractive technique which allows graphene with simultaneous heteroatom doping to be synthesized. In most cases, graphene is grown on a catalyst, followed by the subsequent transfer process. The latter is responsible for the degradation of the carrier mobility and conductivity of graphene due to the presence of the absorbants and transfer-related defects. Here, we report the catalyst-less and transfer-less synthesis of graphene with simultaneous nitrogen doping in a single step at a reduced temperature (700 °C) via the use of direct microwave plasma-enhanced CVD. By varying nitrogen flow rate, we explored the resultant structural and chemical properties of nitrogen-doped graphene. Atomic force microscopy revealed a more distorted growth process of graphene structure with the introduction of nitrogen gas—the root mean square roughness increased from 0.49 ± 0.2 nm to 2.32 ± 0.2 nm. Raman spectroscopy indicated that nitrogen-doped, multilayer graphene structures were produced using this method. X-ray photoelectron spectroscopy showed the incorporation of pure pyridinic N dopants into the graphene structure with a nitrogen concentration up to 2.08 at.%.

Funder

European Social Fund

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3