Effect of Different Fibers on Shrinkage Properties and Bonding Properties of Geopolymer Mortar Repair Materials and Analysis of the Mechanism

Author:

Sui Jingyu1,Li Xiaoyan1,Zhang Hanbin1,Xu Fang1,Deng Jingjing1,Hu Ruiyang1,Chen Muqun1

Affiliation:

1. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China

Abstract

The geopolymer uses fly ash, slag, and other solid wastes as raw materials and is widely used in building repair, but it is brittle and can be made tougher by incorporating fibers. In this study, polyvinyl alcohol (PVA) fibers, polyoxymethylene (POM) fibers, and polypropylene (PP) fibers were incorporated into the geopolymer mortar repair material, and the geopolymer was tested by changing the amount of fibers incorporation as well as the type. The effect of different fibers on the geopolymer mortar repair material was analyzed by comparing the flexural strength, compressive strength, flexural toughness, shrinkage, and bonding properties with cement mortar of different samples. The geopolymer was analyzed by Diffraction of X-rays (XDR) and Scanning Electron Microscopy (SEM) to further understand the hydration products and microstructure of the geopolymer. The results showed that the incorporation of fibers reduced the flexural strength and increased the compressive strength of the geopolymer mortar repair material; the mechanical properties of the geopolymer mortar repair material decreased with the increase in fiber incorporation, and the best mechanical properties of the geopolymer mortar repair material incorporated with 1.0% PP fibers; the toughening effect of PVA fiber was best when the amount of fiber incorporated was the same; the shrinkage properties of the geopolymer were good and had little effects on the building repair; the bonding properties of repaired specimens repaired with geopolymer mortar repair materials depended on the bonding area of the fracture surface, and the bonding area was enhanced with the increase in fiber incorporation; the XRD pattern showed that the hydration products of the geopolymer were mainly CaCO3 and C–S–H gels.

Funder

Science and Technology Project of Hubei Transportation Department

Enterprise Technology Innovation Project of Shandong Province

Innovation and Entrepreneurship Training Program for University Students

Science and Technology Project of Shandong Hi-speed Maintenance Group Co., Ltd.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3