Hygroexpansion, Surface Roughness and Porosity Affect the Electrical Resistance of EVOH-Aluminum- Coated Paper

Author:

Lindner MartinaORCID,Reinelt Matthias,Gilch Tobias,Langowski Horst-Christian

Abstract

When aluminum is applied to paper by physical vapor deposition, substrate roughness contributes to the defect density and hygroexpansion can cause defects that impair the aluminum coating. Both effects can manifest as an increase in electrical resistance. We quantified the effect of substrate paper hygroexpansion (0–95% relative humidity) and paper surface roughness on the effective resistivity (ρEFF) of aluminum coatings. To create different degrees of roughness, five different papers were used. Each of them had one pigment coated side and one side without pigment coating. These different rough paper surfaces were pre-coated with ethylene vinyl alcohol co-polymer (EVOH). Hygroexpansion was promoted by pre-coating and increased more when the coating was applied on rough and porous surfaces. Simultaneously, the pre-coating reduced surface roughness; especially porosity. The reduction of porosity decreased effective resistivity (ρEFF). Based on these results, an aluminum thickness of ≥35 nm is recommended to ensure maximum mechanical stability during hygroexpansion in combination with minimum material usage. Moreover, the resistivity did not regain its initial value when the paper substrate shrank during re-drying.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3