Effect of the Pretreatment on the Properties of Cement-Based Recycled Powder

Author:

Li Jianglin1,Feng Yuan1,Zhong Huaicheng1,Zhang Baifa1ORCID,Wang Junjie2ORCID,Zhang Bin1,Xie Jianhe13

Affiliation:

1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China

2. Department of Civil Engineering, Tsinghua University, Beijing 100084, China

3. Guangdong AIB Polytechnic, Guangzhou 510507, China

Abstract

Three pretreatment methods including calcination, carbonization, and a carbonization-calcination combined pretreatment were studied to understand the pretreatment mechanisms for cement-based recycled powder (CRP). The mineral and microstructure of the CRP sample were investigated through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermal gravity (TG) analysis, and scanning electron microscopy (SEM) after exposure to different thermal temperatures (400 °C, 600 °C, and 800 °C), carbonization times (6 h, 1 d, and 3 d), and pre-carbonization for 1 d followed by heating at 800 °C. The results showed that the optimal thermal pretreatment temperature was approximately 720–800 °C. Through the process of calcination, the C-S-H, Ca(OH)2, and CaCO3 minerals in the CRP sample underwent decomposition to produce CaO or C2S. During carbonation, the pretreatment not only results in the increased production of CaCO3 owing to the reaction of the C-S-H gel and Ca(OH)2 with CO2, but also enhances its properties and the strength of chemical bond between CaCO3 and the post-hydration products. Both CaCO3 and CaO were present after the combined pretreatment, which indicates that the CaCO3 mineral formed superior stability after it had been pre-carbonated. Due to fewer impurities in CRP, the positive effect of the pretreatment on CRP was significantly better than that on recycled powder derived from construction and demolition waste.

Funder

Science and Technology Planning Project of Guangdong Province

Guangdong Basic and Applied Basic Research Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3