Affiliation:
1. Korea Institute of Industrial Technology, Cheonan 31056, Republic of Korea
2. Department of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
Abstract
The field of printed electronics for highly integrated circuits and energy devices demands very fine and highly conductive electric interconnections. In this study, conductive lines having a high cross-sectional aspect ratio were printed via the inkjet printing of Ag nanoparticle inks assisted by a laser-induced selective surface wetting technique: a hydrophobic layer of self-assembled monolayer-treated ZnO nanorods was coated on a glass substrate and selectively ablated by a laser to form micro-channels for the inkjet, whose surface energy changed from 36.3 mJ/m2 to 51.5 mJ/m2 before and after the laser irradiation. With the varying width of the laser-ablated channels and pitch of jetted ink drops, the 3D shapes of the printed silver lines were measured to investigate their effects on the widths, heights, and uniformities of the printed patterns. The results showed that the present technique realized a uniform line of 35 μm width and 0.46 μm average thickness, having an aspect ratio of 0.013, which is 7.6 times higher than that printed on bare glass.
Funder
Korea Institute of Industrial Technology
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献