Failure of Electron Beam Physical Vapor Deposited Thermal Barrier Coatings System under Cyclic Thermo-Mechanical Loading with a Thermal Gradient

Author:

Liu Liyu1,Liu Delin2,Cai Huangyue3,Mu Rende2,Yang Wenhui2,He Limin2

Affiliation:

1. Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation, Key Laboratory of Aeronautical Materials Testing and Evaluation AECC, AVIC Failure Analysis Center, AECC Beijing Institute of Aeronautical Materials, P.O. Box 81-4, Beijing 100095, China

2. Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, P.O. Box 81-5, Beijing 100095, China

3. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

The failure mechanism of a thermal barrier coatings (TBCs) system is investigated using cyclic thermo-mechanical loading with a thermal gradient. Hollow circular cylindrical specimens are employed, consisting of a nickel-based single-crystal alloy DD6 coated with a NiCoCrAlYHf bond coat via arc-ion plating and a surface electron beam physical vapor deposited (EB-PVD) yttria-stabilized zirconia topcoat. The experimental setup allows for a surface temperature of 1130 °C and a substrate temperature of 1070 °C, while a tensile mechanical load of 200 MPa is employed to simulate the centrifugal stress in the middle of the high-pressure turbine blade. The comparison between TBCs with and without mechanical loading implies that the coupled thermo-mechanical load significantly promotes coating spallation since the superposition of mechanical strain enhances the local tensile stress at the peak region of the topcoat/thermally grown oxides (TGOs) interface. A subsequent interfacial morphology analysis demonstrates that the topcoat/TGO interface exhibited a degradation in the direction parallel to the mechanical loading axis. For all the specimens, TGO comprises a duplex structure, consisting of outer spinel and inner α-Al2O3.

Publisher

MDPI AG

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3