Effect of Thickness on Tribological Behavior of Hydrogen Free Diamond-like Carbon Coating

Author:

Huang Biao,Zhou Qiong,Zhang Er-geng

Abstract

The effects of film thickness on the tribological behavior have been investigated for hydrogen-free diamond-like carbon coating in this paper. The film was deposited on cemented carbide substrate (YG10C) by applying a high power impulse magnetron sputtering (HiPIMS) technique. The reciprocating ball on the disc test was conducted on the film with different thicknesses from 0.66~1.26 μm against the ZrO2 ball. The friction coefficient and wear resistance of the coating with different thickness showed a unimodal change. Numerous defects were observed on the surface of the film with a thickness of 0.66 μm and the wear mechanism was mainly plow-grinding. Therefore, the steady-state friction coefficient reached the maximum value of 0.22. The coating with a thickness of 1.01 μm had a higher sp3 content and a smoother, dense surface. A graphite transfer layer with low shear strength was detected on the ZrO2 ball against the film with a thickness of 1.01 μm, which led to the reduction in friction, thus the steady-state friction coefficient reached the minimum value of 0.10. However, the internal stress of the film increased with increasing thickness due to the distortion of the bond angle of internal structure when the film was bombarded by high-energy particles. The peeling coating was observed under reciprocating sliding, which both played the role of plowing and boundary lubrication film. The steady-state friction coefficient was 0.14 with a coating thickness of 1.26 μm. As a result, the hydrogen-free diamond-like carbon coating with optimized thickness shows a smooth and compact surface, low internal stress, high sp3 content, and better tribological properties.

Funder

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3