Microstructure and Corrosion Behavior of the Modified Layers Grown In Situ by Plasma Nitriding Technology on the Surface of Zr Metal

Author:

Zhu Fei1ORCID,Zhang Wenqing1,Zhu Kangwei2,Hu Yin2,Ma Xianfeng1ORCID,Zhang Qiang1,Song Ligang1

Affiliation:

1. Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China

2. Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621700, China

Abstract

Preparing protecting coatings on the surface of Zr claddings has been regarded as one of the accident tolerant fuel (ATF) strategies. In this study, a series of nitride-modified layers were in situ grown by hollow cathode plasma nitriding on the surface of Zr metal. The influence of nitriding currents and time on the phases, composition, microstructure and corrosion resistance of the modified layers was investigated by X-ray diffraction (XRD), X-ray Photoemission Spectroscopy (XPS), transmission electron microscope (TEM), scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS) and potentiodynamic polarization curves. The ZrO2 layer with loose microstructure and cracks prefers to form under low nitriding current of 0.4 A, which also causes poor corrosion resistance. The high temperature caused by high nitriding currents (0.6 A and 0.8 A) promote the formation of compact nanocrystalline layers, made up of nitride and oxynitride. Below the nanocrystalline layer, it is Zr2N caused by N penetration. Besides this, a double-layer structure of the nanocrystalline layer, i.e., an equiaxed crystal zone with a grain size of ~10–50 nm on the surface and a long strip grain region beneath it was observed. The compact nitride/oxynitride layer with excellent interface bonding can improve the corrosion resistance effectively.

Funder

National Natural Science Foundation of China

Guangdong Major Project of Basic and Applied Basic Research

Subject development fund

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3