Skeleton-Based Fall Detection with Multiple Inertial Sensors Using Spatial-Temporal Graph Convolutional Networks

Author:

Yan Jianjun12ORCID,Wang Xueqiang2,Shi Jiangtao2,Hu Shuai2

Affiliation:

1. Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai 200237, China

2. School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China

Abstract

The application of wearable devices for fall detection has been the focus of much research over the past few years. One of the most common problems in established fall detection systems is the large number of false positives in the recognition schemes. In this paper, to make full use of the dependence between human joints and improve the accuracy and reliability of fall detection, a fall-recognition method based on the skeleton and spatial-temporal graph convolutional networks (ST-GCN) was proposed, using the human motion data of body joints acquired by inertial measurement units (IMUs). Firstly, the motion data of five inertial sensors were extracted from the UP-Fall dataset and a human skeleton model for fall detection was established through the natural connection relationship of body joints; after that, the ST-GCN-based fall-detection model was established to extract the motion features of human falls and the activities of daily living (ADLs) at the spatial and temporal scales for fall detection; then, the influence of two hyperparameters and window size on the algorithm performance was discussed; finally, the recognition results of ST-GCN were also compared with those of MLP, CNN, RNN, LSTM, TCN, TST, and MiniRocket. The experimental results showed that the ST-GCN fall-detection model outperformed the other seven algorithms in terms of accuracy, precision, recall, and F1-score. This study provides a new method for IMU-based fall detection, which has the reference significance for improving the accuracy and robustness of fall detection.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference30 articles.

1. World Health Organization (2021). Falls [EB/OL], World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/falls.

2. Fall detection in elderly care system based on group of pictures;Sowmyayani;Vietnam J. Comput. Sci.,2021

3. A multimodal approach using deep learning for fall detection;Ferreira;Expert Syst. Appl.,2021

4. Falling motion detection algorithm based on deep learning;Zhu;IET Image Process.,2022

5. Lu, K.-L., and Chu, E.T.-H. (2018). An Image-based fall detection system for the elderly. Appl. Sci., 8.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3