From Nonlinear Dominant System to Linear Dominant System: Virtual Equivalent System Approach for Multiple Variable Self-Tuning Control System Analysis

Author:

Pan Jinghui,Peng Kaixiang,Zhang WeicunORCID

Abstract

The stability and convergence analysis of a multivariable stochastic self-tuning system (STC) is very difficult because of its highly nonlinear structure. In this paper, based on the virtual equivalent system method, the structural nonlinear or nonlinear dominated multivariable self-tuning system is transformed into a structural linear or linear dominated system, thus simplifying the stability and convergence analysis of multivariable STC systems. For the control process of a multivariable stochastic STC system, parameter estimation is required, and there may be three cases of parameter estimation convergence, convergence to the actual value and divergence. For these three cases, this paper provides four theorems and two corollaries. Given the theorems and corollaries, it can be directly concluded that the convergence of parameter estimation is a sufficient condition for the stability and convergence of stochastic STC systems but not a necessary condition, and the four theorems and two corollaries proposed in this paper are independent of specific controller design strategies and specific parameter estimation algorithms. The virtual equivalent system theory proposed in this paper does not need specific control strategies, parameters and estimation algorithms but only needs the nature of the system itself, which can judge the stability and convergence of the self-tuning system and relax the dependence of the system stability convergence criterion on the system structure information. The virtual equivalent system method proposed in this paper is proved to be effective when the parameter estimation may have convergence, convergence to the actual value and divergence.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference47 articles.

1. Goodwin, G.C., and Sin, K.S. (1984). Adaptive Filtering, Prediction and Control, Prentice Hall.

2. Discrete time adaptive control;Goodwin;SIAM J. Control Optim.,1981

3. A self-tuning robust full-state feedback control design for the magnetic levitation system;Bidikli;Control Eng. Pract.,2018

4. Pole-placement self-tuning control of nonlinear Hammerstein system and its application to pH process control;Zou;Chin. J. Chem. Eng.,2015

5. Stability and Optimality of Self-tuning Regulator;Guo;Sci. China (Ser. A),1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3