On the Dependence of Acoustic Pore Shape Factors on Porous Asphalt Volumetrics

Author:

Praticò Filippo GiammariaORCID,Fedele RosarioORCID,Briante Paolo Giovanni

Abstract

The sound absorption of a road pavement depends not only on geometric and volumetric factors but also on pore shape factors. In turn, pore shape factors mainly refer to thermal and viscous factors (i.e., thermal and viscous effects that usually occur inside porous materials). Despite the presence of a number of studies and researches, there is a lack of information about how to predict or estimate pore shape factors. This greatly affects mixture design, where a physical-based or correlation-based link between volumetrics and acoustics is vital and plays an important role also during quality assurance and quality control (QA/QC) procedures. Based on the above, the objective of this study is to link mixture volumetrics and pore shape factors. In particular, 10 samples of a porous asphalt concrete were tested in order to estimate their thickness, air voids content (vacuum-sealing method, ASTM D6857/D6857M), sound absorption coefficient (Kundt’s tube, ISO 10354-2), airflow resistivity (ISO 9053-2), and permeability (ASTM PS 129). Subsequently, two models (herein called STIN and JCAL) were used to derive both volumetrics and pore shape factors from the estimated parameters listed above, and statistical analysis was carried out to define correlations among the parameters and models performance. Results confirm the complexity of the tasks and point out that estimates of the pore shape factors can be derived based on mixture volumetrics. Results can benefit researchers (in acoustic and pavement mixtures) and practitioners involved in mix design and pavement acceptance processes.

Funder

Italian Calabria Region

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3