Data-Driven Forecasting and Modeling of Runoff Flow to Reduce Flood Risk Using a Novel Hybrid Wavelet-Neural Network Based on Feature Extraction

Author:

Malekpour Heydari Salimeh,Aris Teh Noranis Mohd,Yaakob Razali,Hamdan Hazlina

Abstract

The reliable forecasting of river flow plays a key role in reducing the risk of floods. Regarding nonlinear and variable characteristics of hydraulic processes, the use of data-driven and hybrid methods has become more noticeable. Thus, this paper proposes a novel hybrid wavelet-neural network (WNN) method with feature extraction to forecast river flow. To do this, initially, the collected data are analyzed by the wavelet method. Then, the number of inputs to the ANN is determined using feature extraction, which is based on energy, standard deviation, and maximum values of the analyzed data. The proposed method has been analyzed by different input and various structures for daily, weekly, and monthly flow forecasting at Ellen Brook river station, western Australia. Furthermore, the mean squares error (MSE), root mean square error (RMSE), and the Nash-Sutcliffe efficiency (NSE) is used to evaluate the performance of the suggested method. Furthermore, the obtained findings were compared to those of other models and methods in order to examine the performance and efficiency of the feature extraction process. It was discovered that the proposed feature extraction model outperformed their counterparts, especially when it came to long-term forecasting.

Funder

Universiti Putra Malaysia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3