Identification of the Dominant Factors in Groundwater Recharge Process, Using Multivariate Statistical Approaches in a Semi-Arid Region

Author:

Castillo José Luis UcORCID,Ramos Leal José AlfredoORCID,Martínez Cruz Diego ArmandoORCID,Cervantes Martínez Adrián,Marín Celestino Ana ElizabethORCID

Abstract

Identifying contributing factors of potential recharge zones is essential for sustainable groundwater resources management in arid regions. In this study, a data matrix with 66 observations of climatic, hydrogeological, morphological, and land use variables was analyzed. The dominant factors in groundwater recharge process and potential recharge zones were evaluated using K-means clustering, principal component analysis (PCA), and geostatistical analysis. The study highlights the importance of multivariate methods coupled with geospatial analysis to identify the main factors contributing to recharge processes and delineate potential groundwater recharge areas. Potential recharge zones were defined into cluster 1 and cluster 3; these were classified as low potential for recharge. Cluster 2 was classified with high potential for groundwater recharge. Cluster 1 is located on a flat land surface with nearby faults and it is mostly composed of ignimbrites and volcanic rocks of low hydraulic conductivity (K). Cluster 2 is located on a flat lowland agricultural area, and it is mainly composed of alluvium that contributes to a higher hydraulic conductivity. Cluster 3 is located on steep slopes with nearby faults and is formed of rhyolite and ignimbrite with interbedded layers of volcanic rocks of low hydraulic conductivity. PCA disclosed that groundwater recharge processes are controlled by geology, K, temperature, precipitation, potential evapotranspiration (PET), humidity, and land use. Infiltration processes are restricted by low hydraulic conductivity, as well as ignimbrites and volcanic rocks of low porosity. This study demonstrates that given the climatic and geological conditions found in the Sierra de San Miguelito Volcanic Complex (SSMVC), this region is not working optimally as a water recharge zone towards the deep aquifer of the San Luis Potosí Valley (SLPV). This methodology will be useful for water resource managers to develop strategies to identify and define priority recharge areas with greater certainty.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3