Implementing a Proxy-Basin Strategy to Assess the Transposability of a Hydrological Model in Geographically Similar Catchments

Author:

Donmez Cenk,Cilek AhmetORCID,Paul Carsten,Berberoglu Suha

Abstract

Hydrological modelling is the most common way to investigate the spatial and temporal distribution of regional water resources. The reliability and uncertainty of a model depend on the efficient calibration of hydrological parameters. However, in complex regions where several subcatchments are defined, calibration of parameters is often difficult due to a lack of observed data. The transposability of hydrological models is of critical importance for assessing hydrological effects of land use and climatic changes in ungauged watersheds. Our study implemented a Proxy-Catchment Differential Split-Sample (PBDSS) strategy to assess the transposability of the conceptual hydrological model J2000 in three different subcatchments with similar physiographic conditions in Western Turkey. For dry and wet scenarios, the model was calibrated and validated for five years (2013–2017) in two selected catchments (Kayirli and Ulubey). Afterwards, it was validated by predicting the streamflow in the Amasya catchment, which has similar physical and climatic characteristics. The approach comprises transferring J2000 model parameters between different catchments, adjusting parameters to reflect the prevailing catchment characteristics, and validating without calibration. The objective functions showed a reliable model performance with Nash–Sutcliffe Efficiency (E) ranging from 0.72 to 0.82 when predicting streamflow in the study subcatchments for wet and dry conditions. An uncertainty analysis showed good agreement between the ensemble mean and measured runoff, indicating that the sensitive parameters can be used to estimate discharge in ungauged catchments. Therefore, the J2000 model can be considered adequate in its transposability to physically similar subcatchments for simulating daily streamflow.

Funder

he Ministry of Agriculture and Forest of Turkey

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3