Overview of Multiple Applications of Basil Species and Cultivars and the Effects of Production Environmental Parameters on Yields and Secondary Metabolites in Hydroponic Systems

Author:

Rusu TeodorORCID,Cowden Reed John,Moraru Paula Ioana,Maxim Mihai Avram,Ghaley Bhim Bahadur

Abstract

Basil (Ocimum basilicum L.), including other species and cultivars, is an excellent source of nutritional compounds, the accumulation of which can be stimulated by exogenous factors (environmental and nutritional conditions). Although best practices are relatively established for mature basil plants, microgreens production requires further research to optimize quality and quantity. The study objectives are (i) to provide an overview of the many uses of basil, (ii) collate and present common hydroponic systems available in the market, (iii) review effects of key production environment parameters on basil yields in hydroponic systems, and (iv) summarize the effects of the growth environments on yield quantity and quality of basil microgreens. The paper analyzes in detail key production parameters of basil microgreens in hydroponic systems, such as temperature, humidity, pH, electrical conductivity, dissolved oxygen, carbon dioxide, nutrient solutions, and the influence of light (quantity, quality, and photoperiods). The collated literature review has shown that basil, grown hydroponically, can tolerate high variations of environmental parameters: pH 5.1–8.5, temperature 15–24 °C, relative humidity 60–70%, electrical conductivity up to 1.2 mS cm−1, depending on the developmental stage, dissolved oxygen at 4 mg L−1 (optimally 6.5 mg L−1), and light intensity between 200 and 400 μmol m−2 s−1. The study has synthesized an overview of different production parameters to provide guidance on the optimization of environmental conditions to ensure the quantity and quality production of basil microgreens. Improving the quality of basil microgreens can ideally spur continued gastronomic interest in microgreens in general, which will encourage more entrepreneurs to grow basil and other microgreens. Hence, the study findings are a great resource to learn about the effects of different environments on basil microgreen production. This information can inform research for successful production of different species and cultivars of basil microgreens, and establishing testing protocols to improve the quantity and quality of the harvest.

Funder

Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3